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Rod-to-Coil Transition Scaling in the 
Infinite-Dimensionality Limit: 
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We derive scaling forms for the thermodynamic and correlation quantities for 
the turn-weighted fully and partially directed self-avoiding walks on the hyper- 
cubic lattices in d~> 2. In the grand canonical (fixed fugacity per step) ensemble, 
the conformational rod-to-coil transition sets up in the regime wN=O(1),  
where w is the weight of each 90 ~ turn and ~7 is the (fugacity-dependent) 
average number of steps. Contrary to the conventional critical phenomena 
wisdom, the scaling functions for the two different walk models, directed and 
partially directed, become universal only in the limit d--* ~ .  
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1. I N T R O D U C T I O N  

Recent studies of the conformational rof-to-coil transition of a single linear 
polymer chain have concentrated on the scaling in the lattice models. Both 
self-avoiding walks (SAW) and Gaussian walks have been investigated: see 
Refs. 1-4 and earlier literature cited therein. Unusual aspects of the rod-to- 
coil transition scaling include nonuniversality of the scaling functions for 
several SAW and Gaussian models, and suppression of the self-avoidance 
effects in the large-persistence-length regime. Approximate Flory-type 
argument (5) suggests a crossover to Gaussian scaling for SAW models in 
d>  2. This property should become exact in the d ~  ~ limit. 

In d=2 ,  the nonuniversality of the scaling functions has been 
demonstrated explicitly for directed walk models, ca) In this work, we report 
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results for the fully directed (FD) and partially directed (PD) SAWs on the 
hypercubic lattices in d>~ 2. We find that the scaling functions become 
universal only in the d ~ ~ limit. 

The directed SAW models have no really long-range self-avoidance 
effects. Indeed, for the FD walks considered in Section 2, the self-avoidance 
condition is irrelevant. For the PD walks, which are discussed in Section 3, 
the self-avoidance constraint reduces to the "no immediate returns" con- 
dition. However, the directed walk models are exactly solvable (see Refs. 4 
and 6-8 and literature cited therein), and exhibit scaling behaviors different 
from the isotropic walks. It is therefore instructive to study the rod-to-coil 
transition scaling properties for directed models in detail. Some general 
observations on the nature of the scaling functions, summarized in 
Section 4, should be applicable for the more realistic isotropic lattice walk 
models. 

2. FULLY DIRECTED WALKS ON THE HYPERCUBIC LATTICES 

A FD walk on the hypercubic lattice in d dimensions consists of a 
sequence of N steps +a~  i ( i=  1, 2 ..... d), where a is the lattice spacing, and 
~i denote unit vectors along the lattice axes X1 ..... Xa. For each N-step 
walk ( N =  1, 2,...), we denote by ne the number of the corresponding +a2~ 
steps: 

d 

N= ~ ni (2.1) 
i = 1  

Let T denote the number of 90 ~ turns in a walk, and assign weights x7 ~ per 
+ a ~  steps. Then the generating function can be defined via 

G(xj; w)= ~ (wT FI x~' t (2.2) 
all  wa lks  i = 1 \ / 

The sum in (2.2) is over all possible walks starting at a fixed origin. We can 
also define partial generating function G i for all walks with their first step 
along the Xi axis, 

d 

G(x~ ..... xd; w) = y~ G~(x~,..., xd; w) (2.3) 
i = l  

By extending the method of Ref. 4, we can calculate the generating function 
G by first deriving recursion relations among the Gi. These are 

d 

Gi = xi + xiGi + wxi ~ Gj (2.4) 
j = l  
jv~i  
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Equation (2.4) expresses the fact that a walk starting with the +a~i  step 
can terminate (weight xi), continue straight (weight xiGi), or turn (weights 
wx~Gj). It is equivalent to 

G~ = x, (1 + wG) (2.5) 
1 - (1 - w )  xi 

and, when summed over i, gives an equation for G. Thus, we obtain 

where 

Sd 
G(xj; w) = 1 - wSa (2.6) 

d 
xi (2.7) 

Sd ~- ~, I__(I__w)  xi 
i = 1  

The grand canonical partition function, in the ensemble with the 
fugacity weight z u assigned for each N-step walk, is given by 

Z(z; w) = G(z,..., z; w) = 
dz 

1 -  [1 + ( d -  1)w]z 
(2.8) 

The average number of steps in a walk is given by 

O l n Z  1 
N(z; w ) = z  0----~ - 1 - z [ 1  + ( d -  1)w] (2.9) 

In the w-~ 0 limit, we have 

N(z; 0 ) =  (1 - z )  - I  - N ( z )  (2.10) 

As discussed in Ref. 4, the scaling limit corresponds to w ~ 0, .N ~ ~ ,  with 
the scaling combination 

z = w N =  w/(1 - -z )  (2.11) 

taking values of O(1). For fixed "stiffness" w, very large chains will be 
coiled provided N>> w -1. For fixed length N, very stiff chains ( w ~ N  -1) 
will be rodlike. The transition occurs when w and N-1  are comparable, i.e., 
z is of order 1. The use of N is for technical convenience only. (4) In 
principle, the scaling relations could be formulated in terms of N(z; w). The 
scaling relations take the form 

Z(z; w) _ 1 1 
'~ - A ( c ~ )  (2.12) 

Z(z;  o)  - 1 - ( d -  1 ) w ( ~ -  1) 1 - ( d -  1)~ 

N(z; w) 1 
- - ~  =B(ez)  (2.13) 
N(z;O) l - ( d - 1 ) z  
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Here the scaling functions A and B are defined in terms of the scaling field 

g = cz (2.14) 

where the metric factor c can be determined ~4) from the fixed-w critical 
point value Zc(W). Indeed, for fixed w > 0, the functions Z(z; w) and N(z; w) 
diverge as 

Z~Zc(W)_[l+(d_l)w] i (2.15) 

The constant c is given by the scaling limiting behavior of the combination 

Thus, we obtain 

and 

[1 - zc(w)] ~(z) ~ c~ (2.16) 

cvD = d -  1 (2.17) 

AvD(g) = BvD(g)= (1 -- g ) - i  (2.18) 

We now turn to the calculation of correlation lengths. The unit vector 
along the directed or "time" axis is 

1 d 

e[[ -.~---~i~=l fCi (2.19) 

The parallel displacement after N steps is therefore given by 

) rll =r '~ ' l l  = anifci "~H=/-5 
i 1 

where r is the origin-to-end vector. It follows from (2.20) that the first- 
moment parallel correlation length (4) is simply 

w) =----~ N(z; w) (2.21) r a 
, / a  

We also consider the second-moment parallel correlation length defined by 

[,}~)(Z'~W)]2~--(alIw~alksF~IzNwT)/z(z;W ) ( 2 . 2 2 )  
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We have 

a2z-1 Z~z w)]2 =-d z 

a 2 l + [ l + ( d - 1 ) w ] z  
- d { 1 -  [1 + ( d -  1)w3z} 2 (2.23) 

The first-moment perpendicular correlation length vanishes by symmetry. 
The second-moment definition is analogous to (2.22), but with 

d 

r~_ = r 2 -- r~l = a 2 ~, n/2 - r~l (2.24) 
i = 1  

Thus, 

[r [ r  X i G ( x  1 . . . . .  X d ;  W )  x , = z  

i = 1  

=a2dZ 1 X-~x G(x,z, . . . ,z;w) (2.25) 
x = z  

The resulting expression for r is 

a 2 ( d - 1 ) E l + ( 1 - w ) z ]  
w)] 2 = - -  

d [ 1 - ( 1 - w ) z ] { 1 - z [ l + ( d - 1 ) w ] }  (2.26) 

The scaling relations for the correlation lengths take the forms 

w) 
~l~)(z; 0) ~ P~k)(e~)' k ~> 1 (2.27) 

~ l ( z ;  
~ Q(k)(c~), k even (2.28) 

Explicit calculation yields 

1 
P(v~(Cr) = P(v~(CZ) (2.29) 

1 - ( d -  1)-c 

1 Q(2) (cT) (2.30) 
vD, = {(1 + r)[1 _ ( d _  1)r] }~/2 

Note that  for fixed w > 0  the results (2.8), (2.21) with (2.9), (2.23), and 
(2.26) verify the exponent values 7 = 1, v• = 1/2, and v u = 1 for all d>~2. 
These values were predicted by Cardy (v) from field-theoretical con- 
siderations. 
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3. PARTIALLY D IRECTED S E L F - A V O I D I N G  W A L K  M O D E L  

A partially directed (PD) SAW consists of +a2i ( i= 1,..., d - 1 )  and 
+ a2d steps. Thus, we single out the X d axis as a "two-way" direction. The 
unit vector along the directed or "time" axis is given by 

1 d - - I  

~ = ( d -  1) 1/2 y" )?' (3.1) 
, = 1  

As long as only one axis is undirected, the problem is exactly solvable. The 
unbiased, w=  1 model in d = 2  has attracted much attention: consult 
Refs. 4 and 6-8 for the literature. (In fact, the PD model had been much 
more "popular" than the FD model!) The solvability of the d >  2 PD SAW 
model was noted by Szpilka, (8) who reported that ~=1  for all d>~2. 
Redner and Majid (6) derived a variant of the generating function [their 
Eq. (7)] which is consistent with our results (see below). 

Let ni ( i=1  ..... d - 1 )  and n_+ denote the number of the +a2l  ..... 
+ afcd-1, ~ afCd steps in a given N-step walk, where 

d 1 

N =  ~ ni+n+ +n (3.2) 
i = l  

We introduce the generating function 

G(Xl ..... Xd_ t ;X+,X_;W)= ~ WrX++X ~_ X'I i (3.3) 
al l  w a l k s  i = 1 

where the notation for the step weights is self-explanatory. The partial 
generating functions for walks with the first steps +a2l ..... +a2d ~, +_a2d 
will be denoted G1 ..... Gd_ 1, G+, respectively. We will also use the function 

d - - 1  

F = G - G  + - G  = E Gi (3.4) 
i = l  

The recursion relations for G~ (i < d) are similar to those for the FD model 
(Section 2); we have 

G i = x i + x i G i + w x i  Gj+G+ +G_ (3.5) 
1 

j ~ i  

This relation can be rearranged to yield 

Gi = xi (1 + w F + w G +  +wG_)  (3.6) 
1 - ( 1  - w )  xi 
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When summed over i = 1,..., d -  1, (3.6) reduces to 

F = S a _ I ( I + w F + w G + + w G  ) (3.7) 

where Sd is defined in (2.7). The recursion relations for G+ read 

G+ = x +  + x + G +  + w x + F  (3.8) 

G _ = x  + x _ G  + w x  F (3.9) 

The new feature here is the absence of the G term in the relation (3.8) for 
G+, and of the G+ term in (3.9): this is the only manifestation of self- 
avoidance for the PD SAW model. Equations (3.7)-(3.9) form a system of 
linear equations for F and G+. Solving them, one obtains the total 
generating function as the sum of F, G+,  and G_,  

Sd I + R + w R S d _ I  
�9 (3.10) G(Xl , . . . ,Xd-1;X+,X , w ) = I _ w S a _ I _ w 2 R S d _ I  

where 
R(x+)  x+ x = + ~  ( 3 . 1 1 )  

l - x +  1 - x  

The partition function is obtained by putting all the x's to z in (3.10). 
Thus, 

z [ ( d +  I)(1 - z) + 2dwz] 
Z(z; w) = 1 - 2z - ( d -  2) wz - [ 2 ( d -  1) w 2 - ( d -  2 ) w -  1 ] z 2 (3.12) 

and the scaling function, defined as in (2.12), is given by 

1 +d(1 + 2 z )  
ApD(CZ) = ( d +  1)[1 - ( d -  2)z - 2 ( d -  1) z2] (3.13) 

In order to identify CpD , we first calculate the location of the singularity of 
Z(z; w), 

2 
zc(w) = 2 + w [ d -  2 + (d 2 + 4 d -  4) 1/2 ] (3.14) 

The metric factor c is then obtained by using (2.16), 

d -  2 + (d 2 + 4 d -  4) 1/2 
CPD ~--- 2 (3.15) 

The expression for the average number of steps N(z; w) is very long; we 
only report 

N(z; 0 ) =  (1 - z )  -1 - N ( z )  (3.16) 
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and the scaling form [defined as in (2.13)] 

1 +d(1 + 4 z ) + 2 ( 2 d -  1) ~2 
B e o ( c z ) = [ l + d ( l + 2 z ) ] [ l _ ( d _ 2 ) z _ 2 ( d _ l ) z 2 ]  (3.17) 

In order to calculate the correlation lengths, we first note that the 
parallel displacement is given by [see (3.1)1 

a 

r l l - ( d -  1) 1/2 (n l+  '.- +na-1) (3.18) 

The kth-moment parallel correlation lengths are obtained as 

[~l~)]k= ( a - i ) 1 / 2  Z-~z G(z,...,z;x+;w) x+=z Z(z;w) (3.19) 

Specifically, we calculated 

( d -  1) */2 
w) 

a 

= ( d -  1)(1 - z + 2wz) 2 

• ( [ ( d +  1 ) ( 1 - z ) + 2 d w z ]  

• { 1 - 2z - ( d -  2) wz - [ 2 ( d -  1 ) w 2 - ( d -  2)w - 1 ] z 2 } ) - 1 

(3.20) 

and the appropriate scaling function [see (2.27)] 

P~(c~) = (d+ 1)(1 + 2~) 2 
[1 + d(1 + 2z)] [1 - ( d -  2)z - 2 ( d -  1)T 23 

(3.21) 

The expressions for ~l~l(z; w) and also for ~ ) ( z ;  w) are extremely long and 
are not listed here. [The calculation of ~ ) ( z ;  w) can be accomplished by 
constructing the appropriate expression for r~; compare (2.24)-(2.25). 
Details are omitted here.] We report the appropriate scaling functions [see 
(2.27)--(2.28)], 

I d +  1 ]1/2 1 + 2~ 
P~e~(er) = 1 + d(1 + 2r)J  1 - ( d -  2)~ - 2 ( d -  1 )~2 (3.22) 

( d +  1 ) [ d +  2 ( 2 d -  1) ~(1 + r) + 2/: 3 ] (3.23) 
[ Q ~ ( c z ) ] 2  = d(1 + r)[1 + d(1 + 2~)3 [1 - ( d -  2)~ - 2 ( d -  1)~ 2 ] 
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4. DISCUSSION 

It is obvious from the results reported in Sections 2 and 3 that the 
scaling functions remain nonuniversal for all finite d >~ 2. If Flory-type ideas 
of Nakanishi ~5) have bearing for directed models, restoration of universality 
in the d ~ oe limit may be anticipated. 

The scaling-field combination 

g = cz = cwN (4.1) 

contains, in the d--* oe limit, additional unbounded parameter. Indeed, for 
both models considered, 

c ~ d as d--* oo (4.2) 

see (2.17) and (3.15). As long as we define the scaling limit with fixed 
dw_N= O(1), while d, w -1, and N are large, we can formally expand the 
scaling functions in powers of lid. Thus, we substitute g/c(d) for z and 
regard the scaling functions as functions of g and 1/d. The result is 
extremely simple, 

A(g ,d) ,  B(g,d) ,  P(l'2)(g,d), [ O ( 2 ) ( g , d ) ] 2 ~ ( 1 - g ) - I  (4.3) 

for both models. We also calculated the leading corrections to (4.3). (There 
are no corrections for the FD model A, B, and p,.2).) It is interesting to 
note that the difference between the FD and PD scaling functions for the 
thermodynamic quantities, i.e., A and B, is of O(d-3). The first-moment 
correlation length scaling functions P(t) differ in O(d-2), while the second- 
order correlation length scaling functions p(2) and Q(2) are nonuniversal in 
O(d-l) .  
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